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Abstract

In many economic environments, agents often continue to learn about the same underlying state variable, 
even if they switch action. For example, a worker’s ability revealed in one job or when unemployed is 
informative about her productivity in another job. We analyze a general setup of experimentation with 
common values, and show that in addition to the well-known conditions of value matching (level) and 
smooth pasting (first derivative), this implies that the second derivatives of the value function must be equal 
whenever the agent switches action. This condition holds generally whenever the stochastic process has 
continuous increments. The main appeal of our approach is its applicability, which is demonstrated with 
two applications featuring common value experimentation: strategic pricing, and job search with switching 
costs.
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1. Introduction

Consider a firm that hires a young, promising recruit and wishes to find out about her produc-
tive ability. Even if she is assigned to a junior position, the firm will nonetheless also learn a great 
deal about that worker’s ability to perform in an executive position. Most likely the productivity 
and the learning rates will be different in both jobs, yet whatever the firm learns when the worker 
is in one position affects the value and beliefs about her productivity in other positions. Com-
mon value experimentation is particularly important for promotion decisions. Likewise, common 
value experimentation is prevalent in consumer choice, for example, patients who learn about the 
effectiveness of different drugs.

In this paper we analyze optimal experimentation problems in environments of common val-
ues. Contrast our setting to the canonical experimentation problem (Gittins and Jones, 1974)
in discrete time and with independent arms.1 Gittins’ seminal insight is to calculate the value of 
pulling an arm (denoted by the so-called Gittins index) and compare the value to the Gittins index 
of all other arms. We can proceed in this manner because each of the value functions is indepen-
dent of the stopping rule. In other words, the value of pulling each arm itself is not a function 
of the cutoff. Instead, when there is common value experimentation, the underlying states are no 
longer independent and pulling any given arm affects the value of the other arms. The immediate 
implication is that the decision to pull any given arm affects the value of pulling all other arms. 
As a result, we have to solve for the value of each of the arms and the cutoffs simultaneously and 
we can no longer apply Gittins’ logic. To our knowledge, there is no known solution to deal with 
this problem in discrete time. We can, however, analyze this problem in continuous time. We 
think here of a general experimentation setup where the stochastic component follows a gener-
alized jump-diffusion process, that incorporates continuous increments like a Brownian motion, 
as well as Poisson jumps. This setup includes among many others pure Bayesian learning where 
the belief is updated as a martingale, non-Bayesian learning where the state variable follows a 
Brownian motion with a drift, as well as experimentation in strategic and market settings.

Our main result is to establish a simple equilibrium condition on the value function that must 
be satisfied whenever the common value experimentation problem has a continuous increment 
component (Brownian motion). This condition imposes equalization of the second derivative of 
the value functions at each arm in the neighborhood of the cutoff. Our condition adds to the 
well-known conditions at the cutoff of value matching (the value function is continuous) and 
smooth pasting (the first derivative is continuous). In the presence of common value experimen-
tation, equilibrium must now also satisfy that the second derivative is continuous at the cutoff. 
In experimentation problems we typically cannot explicitly solve for the value function, yet its 
properties can be studied using Bellman’s principle of optimality, i.e., equilibrium actions must 
be robust to deviations. The celebrated smooth pasting condition considers a deviation in state 
space: given a candidate equilibrium cutoff, the agent postpones switching arms at this cutoff, 
possibly deviating forever. Equilibrium requires this is suboptimal, and when the value of such 
a deviation is derived in the neighborhood of the switching point, this gives rise to an inequality 
condition on the first order derivative of the value function. Since the inequality holds on both 

1 See Bergemann and Välimäki (2008) for a survey on bandit problems. At this point, we must clarify the terminology 
we use. Common value experimentation is not common learning as in Cripps et al. (2008). There, given a stream of 
signals, two agents want to learn the value of an unknown parameter, so there is no experimentation, just belief updating. 
The term common learning refers to the fact that the value eventually becomes common knowledge to both agents.
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sides of the candidate equilibrium cutoff, this implies equalization of the first derivative of the 
value function.

The condition we derive here instead ensures in addition there is no one-shot deviation, i.e., 
no deviation in time. The deviating agent switches arms for a short instance, and then reverts to 
the candidate equilibrium arm. When there are incremental changes in the stochastic process, the 
differential equation for the value function depends on the second derivative, sometimes referred 
to as the marginal value of information. The suboptimality of the one-shot deviation therefore im-
plies an inequality on the second derivative. Near the cutoff, this has to be satisfied on both sides 
and with opposite inequality, which implies equalization of the second derivative of the value 
function. The condition is so stark because at the cutoff there is no gain from switching perma-
nently, from value matching and smooth pasting, but the learning trajectories will differ with a 
periodical deviation. Equating the second derivative ensures that no such gains from deviation 
exist.

There is an alternative way of deriving the second derivative condition by applying the method 
of sub- and super-solutions (see, e.g., Keller and Rady, 1999 and Bonatti, 2011). That method 
long precedes ours and is used to prove the existence of solutions for many classes of boundary 
value problems involving ordinary and partial differential equations by showing the existence of 
continuously differentiable sub- and super-solutions and verifying a regularity condition. While 
the method is well known, it is more involved than ours. In addition, it is not always applicable 
(see the example in Section 4.2). In the one-dimensional state space case, the method of sub-
and super-solutions implies that the value function is continuously twice differentiable, which 
coincides with our second derivative condition. However, this may not be true in the multi-
dimensional state space case.

The main appeal of our approach is its applicability, which is also the main contribution of this 
paper. Not only are such environments with common value experimentation prevalent in many 
economic contexts, the implementation of the one shot deviation principle is straightforward. 
We consider two applications. First, we consider a setting of strategic pricing with continued 
learning, and show how the second derivative condition affects the equilibrium allocation and its 
efficiency. Second, we apply common value experimentation to a setting with unemployment and 
show the generality of the method even in the presence of search frictions (or switching costs).

2. The basic model

Consider one agent and a bandit with two arms j = 1, 2. Time is continuous and denoted by 
t ≥ 0. In the basic model, we will consider the case where there is only one real-valued state 
x(t) ∈ X and X ⊂R is a connected set. The state x determines the instantaneous flow payoffs of 
each arm fj (x). Future payoffs are discounted at rate r > 0.

For each arm j , there is a probability space {�j, F j , P j } endowed with filtration {F j
t , t ≥ 0}. 

It is assumed that the state x follows a jump-diffusion process under P j . In other words, denote 
Tj (t) to be the total measure of time to date t that arm j has been chosen. Then, the updating of 
x in arm j satisfies:

dxj (t) = μj (x(t−))dTj (t) + σj (x(t−))dZj (Tj (t))

+
∫

Gj(x(t−), y)Nj (dTj (t), dy). (1)
R−{0}
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The state x is updated either in arm 1 or in arm 2 and hence dx(t) = dx1(t) + dx2(t). In the 
updating formula, Zj (t) is a standard Wiener process and Nj is a Poisson random measure that 
is independent of Zj . For simplicity, we assume that Nj has finite intensity measure νj , i.e., Nj

can be the sum of mj independent Poisson processes, which are also independent of Zj . Each 
Poisson process has intensity λj and takes value in hi for i = 1, · · · , mj . In this case,

νj =
mj∑
i=1

λiδhi
, (2)

where δh is a Dirac mass concentrated at h.2 Gj(x, y) denotes the change of the state when there 
is a Poisson jump y at state x. Furthermore, we assume that N1, N2, Z1 and Z2 are mutually 
independent of each other. The process considered by us covers a lot of interesting applications 
in the literature. For example, the standard diffusion process dx = μj (x)dt + σj (x)dZj (t) is a 
special case without any jump in the process. And if we assume that σj (x) = 0, then the path 
of x is determined by the drift μ(x), interspersed with jumps taking place at random times. 
Depending on the applications, there are many different interpretations of the state x. Observe 
that we allow for a general process for x and that a priori the martingale assumption is not made. 
This includes belief updating as a special case (the agent sees output and updates beliefs x using 
Bayes rule)3 but also human capital accumulation where output changes over time (human capital 
x is accumulated stochastically and determines the realized output).

In this two-armed bandit problem, the stochastic process {xt} can be constructed on the prod-
uct space {�, F} = {�1, F1} × {�2, F2} with filtration Ft = F1

T1(t)
∨F2

T2(t)
. Given x0 = x, the 

agent is choosing an allocation rule at ∈ {1, 2} adapted to filtration {Ft}t≥0 to solve the following 
optimal control problem:

v(x) = sup
at

{
E

∫ ∞

t=0
e−rtfat (xt )dt

}
(3)

s.t. dxt = μat (xt )dt + σat (xt )dZat (t) +
∫

R−{0}
Gat (x(t−), y)Nat (dt, dy).

To solve the problem, two technical assumptions are required on the functions of fj(x), μj (x), 
σj (x) and Gj(x, ·).

Assumption 1. X is a connected set. fj (x), μj (x), σj (x) and Gj(x, y) for each y are C2 of x, 
for any x ∈ X .

Assumption 2. The first derivatives of fj (x), μj (x), σj (x) and Gj(x, ·) with respect to x are 

bounded: there exists K > 0 such that for any x ∈ X , |f ′
j (x)|, |μ′

j (x)|, |σ ′
j (x)| and | ∂Gj (x,y)

∂x
| for 

each y are all less than K .

2 This jump-diffusion process is an important class of general Lévy process, which can be analyzed similarly (see, e.g., 
Cohen and Solan, 2013 and Kaspi and Mandelbaum, 1995).

3 It is well known that in the Bayesian learning case, the posterior belief follows a martingale stochastic process (see, 
e.g., Bolton and Harris, 1999 and Keller et al., 2005).
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The above assumptions are standard in the literature. In particular, Assumption 2 guarantees 
Lipschitz continuity, which is crucial to guarantee that there exists a unique solution to stochastic 
differential equation (see, e.g., Applebaum, 2004)

dxj (t) = μj (x(t−))dTj (t) + σj (x(t−))dZj (Tj (t))

+
∫

R−{0}
Gj(x(t−), y)Nj (dTj (t), dy). (4)

Moreover, these conditions are usually satisfied in the applied literature.
Obviously, this common value experimentation problem is different from the standard opti-

mal stopping problem. The reward function at stopping is not pre-specified, but endogenously 
determined. Moreover, we can no longer apply Gittins’ logic in this situation because the state is 
perfectly correlated, and hence experimentation in one arm also changes the value of pulling the 
other arm.

3. The main result

Following the literature on optimal stopping problem, we assume that the optimal strategy 
is an interval strategy. Potentially, we can partition the space X into (possibly) infinitely many 
intervals such that arm j is chosen on disjoint intervals. This interval strategy allows us to derive 
the value function on each interval. Without loss of generality, assume that an agent with x̄ >

x > x� chooses arm 1 and an agent with x < x < x� chooses arm 2. Then from Ito’s lemma and 
Assumptions 1, 2, the value function v(x) is at least C2 on each interval, which can be written as4:

rv(x) = f1(x) + μ1(x)v′(x) + 1

2
σ 2

1 (x)v′′(x)

+
∫

R−{0}
[v(x + G1(x, y)) − v(x)]ν1(dy), (5)

for x ∈ (x�, x̄); and

rv(x) = f2(x) + μ2(x)v′(x) + 1

2
σ 2

2 (x)v′′(x)

+
∫

R−{0}
[v(x + G2(x, y)) − v(x)]ν2(dy), (6)

for x ∈ (x, x�).
Although we can explicitly derive the value function on each interval, we still need boundary 

conditions to pin down the cutoffs determining the intervals. Consider x� to be any cutoff in the 
interior of X . The traditional way to solve this continuous time bandit problem is to apply the 
“Whittle reduction” technique (Whittle, 1980) and transform the problem to a standard optimal 
stopping problem (see, i.e., Karatzas, 1984 and Kaspi and Mandelbaum, 1995). Unfortunately, 
the “Whittle reduction” technique is valid only when the arms are independent and hence cannot 
be applied to our common value experimentation problem. However, we are able to show that the 
well-known properties of value matching and smooth pasting still hold at the cutoff x�. Moreover, 
we derive a new second derivative condition based on the Bellman’s principle of optimality.

4 For the derivation of the value function, see Applebaum (2004) and Cohen and Solan (2013).
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3.1. Value matching and smooth pasting

Value matching and smooth pasting conditions are standard boundary conditions in the opti-
mal stopping literature, where the reward function is exogenously given. It is natural to conjecture 
that these conditions still hold even when the reward function is endogenously determined by the 
equilibrium value function.

Value matching condition implies that the value function v(x) is continuous at x�. Since v(·)
is not well defined at x�, this condition actually means

v(x�+) � lim
x↘x�

v(x) = v(x�−) � lim
x↗x�

v(x). (7)

Suppose on the contrary this condition is violated and v(x�+) > v(x�−), then switching arms at 
x� cannot be optimal. In particular, there exists sufficiently small ε such that choosing arm 1 at 
the interval (x� − ε, x�) can lead to higher payoffs.

Smooth pasting condition is another standard condition in the optimal stopping models. In 
the context of our model, the condition implies that the first derivative of the value function is 
continuous at x�: v′(x�+) = v′(x�−). Smooth pasting was first proposed by Samuelson (1965) as 
a first-order condition for optimal solution. The proof of smooth pasting condition can be found 
in Peskir and Shiryaev (2006) and is omitted here. The logic of the proof builds on the notion 
of a deviation in the state space X . A candidate equilibrium prescribes the optimal switching 
of action at the cutoff x�. Optimality of a cutoff implies that the value is lower if switching is 
postponed at the cutoff. This implies we can rank the value functions V and U . In the limit as 
we get arbitrarily close, this implies a restriction on the first derivative.

In particular, instead of switching at x�, the agent switches arms only when the state reaches 
x� + ε. Such a deviation may take arbitrarily long time or even be permanent in the sense that 
switching never happens. At x�, the induced payoff from this deviation is lower than the equi-
librium payoff. As ε becomes small, this inequality transforms into an inequality of the first 
derivatives. Likewise, we consider another deviation from the candidate equilibrium where the 
agent switches at x� − ε instead of at x�. This again induces another inequality, which in the 
limit is the opposite of the first inequality, therefore implying equality of the first derivatives at 
the optimal cutoff x�.

3.2. Bellman’s principle of optimality

We now establish that Bellman’s principle of optimality imposes the second derivative con-
dition, an additional constraint on the equilibrium allocation. Conceptually, the key difference 
between the smooth pasting and second derivative conditions is that we consider different kinds 
of deviations. For the smooth pasting condition, the deviation is in the state space X . On the con-
trary, for the second derivative condition, the deviation is in the time space. The deviating agent 
chooses the other arm for a duration dt , and then switches back. We consider the value of such 
deviations as dt becomes arbitrarily small. The deviation in time space is similar to the one-shot 
deviation in discrete time. Instead, the deviation in state space could be a permanent deviation.

Theorem 1 (Second derivative condition). If σ1(x) > 0 and σ2(x) > 0 for all x ∈ X , a necessary 
condition for the optimal solution x� is that v′′(x) is continuous at x� (i.e., v′′(x�+) = v′′(x�−)) 
for any possible cutoff x�.
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Proof. Without loss of generality, we assume that an agent with x̄ > x > x� chooses arm 1 and 
an agent with x < x < x� chooses arm 2. Then the optimality of choosing arm 1 for x ∈ (x�, x̄)

immediately implies that:

f2(x) + μ2(x)v′(x) + 1

2
σ 2

2 (x)v′′(x) +
∫

R−{0}
[v(x + G2(x, y)) − v(x)]ν2(dy)

≤ rv(x). (8)

For x → x�, the above inequality implies:

f2(x
�) + μ2(x

�)v′(x�+) + 1

2
σ 2

2 (x�)v′′(x�+)

+
∫

R−{0}
[v(x� + G2(x

�, y)) − v(x�+)]ν2(dy) ≤ rv(x�+) (9)

where v′(x�+) � limx↘x� v′(x) and v′′(x�+) � limx↘x� v′′(x).
At x�, we have v(x�+) = v(x�−), from the value matching condition. This implies that:

f2(x
�) + μ2(x

�)v′(x�+) + 1

2
σ 2

2 (x�)v′′(x�+)

+
∫

R−{0}
[v(x� + G2(x

�, y)) − v(x�+)]ν2(dy)

≤ f2(x
�) + μ2(x

�)v′(x�−) + 1

2
σ 2

2 (x�)v′′(x�−)

+
∫

R−{0}
[v(x� + G2(x

�, y)) − v(x�−)]ν2(dy). (10)

From the smooth pasting condition, v′(x�+) = v′(x�−) and hence we should have: v′′(x�+) ≤
v′′(x�−). Similarly, we can consider a one-shot deviation on the other side of x� (i.e., at x <

x < x�). By the same logic we get: v′′(x�+) ≥ v′′(x�−). Therefore, it must be the case that 
v′′(x�+) = v′′(x�−). �

The second derivative measures the change in value of having the option to switch arms and 
can be interpreted as a measure of the marginal value of information (as 1

2σ 2
j (x)v′′ is often 

called as “value of information”). A way to read the second derivative condition then is that it 
requires the marginal value of information to be the same at the optimal cutoff. At the optimal 
cutoff there is no gain from switching permanently, from the value matching condition. But 
the experimentation trajectories will differ with a periodical deviation, and in the limit the only 
difference in payoff is due to the experimentation value. Equating the values of experimentation 
ensures that at the optimal cutoff, no gains from switching exist.5

The key assumption of Theorem 1 is that both arms contain a non-trivial diffusion process. If 
this condition is violated and there are only discrete jump changes, it is quite easy to see that this 

5 We can more generally consider extensions with endogenous choices by the agents, for example, where the agent 
chooses effort e to change fj , μj and σj at cost c(e). It is straightforward to show that the second derivative condition 
still holds.
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condition on the second derivative does not hold any longer. In particular, if σ1 = σ2 = 0, then 
Bellman’s principle of optimality leads to the same condition as the smooth pasting condition: 
v′(x�+) = v′(x�−).6

There is a close relation between our result in Theorem 1 and Wirl (2008). He derives the sec-
ond derivative condition in the context of a common-value two-armed bandit problem with only
diffusion processes, i.e. a pure Brownian motion in the absence of discrete increments. But his 
Brownian motion setting is very special as it requires that the variance term on the noise is iden-
tical on both arms: σ1(x) = σ2(x) for all x. As shown by the Online Appendix, this assumption 
enables him to cancel the second derivative term of the value function, because by construction 
the value of information is the same on both arms, and to derive an explicit formula of the first 
derivative of the value function at the cutoff. Using this first derivative formula, Wirl (2008)
writes down expressions of the second derivative of the value function and shows algebraically 
that v′′(x�+) = v′′(x�−). This logic clearly does not hold under a minor difference in the Brow-
nian noise terms. Our result adds to Wirl’s in two ways. First we derive the condition in a very 
general context that includes general jump-diffusion processes, and show when the result does 
and when it does not hold (in the absence of a continuous increment component). Second, our 
proof is not constructive and does not hinge on the restrictive assumption σ1(x) = σ2(x). Instead 
we use the one-shot deviation principle that is generally applicable. This enables us to investigate 
problems with more interesting stochastic processes7 as well as environments with strategic and 
market interaction.

Superficially, the second derivative condition appears similar to the well-known super-contact 
condition due to Dumas (1991), yet there is no relation. The setting is fundamentally different 
because in Dumas, there is only one arm and a cost is paid to stay on that arm. More important, 
the super-contact condition is not the result of deterring a one-shot deviation, but rather a version 
of the smooth pasting condition in a setting with frictions.8

4. Applications

In this section, we apply our framework to two different settings, one with strategic interac-
tion, and one with unemployment from search frictions, and hence switching costs.

4.1. Strategic pricing

Consider two firms that sell to N ≥ 1 consumers whose preferences are identical but unknown. 
A representative consumer’s valuation is determined by a common factor across the different sell-
ers’ products. A real life example is that of a patient who does not know whether the consumption 
of a painkiller is effective. Buying ibuprofen products from different sellers obviously generates 
information about a common underlying state, the effectiveness of the painkiller. This setup is 
similar to that in Bergemann and Välimäki (1996) and Bergemann and Välimäki (2000) with 

6 In the context of one-armed bandit problems, let V be the value of pulling the risky arm and U be the value of pulling 
the safe arm. The logic of proof implies that V is locally more convex than U : V ′′(x�) ≥ U ′′(x�), which is satisfied 
at x� .

7 For example, in Eeckhout and Weng (2010), the signal-to-noisy ratios generically differ across firm types.
8 The experimenter has to pay a flow cost to stop the control from moving beyond the cutoff. When recalculating 

the smooth pasting condition in the presence of a proportional cost, this condition implies a restriction on the second 
derivative. This restriction is also derived from considering a deviation in the state space, not in time space.
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independent arms, except that here learning is about common values and therefore the arms are 
perfectly correlated.

Model set up. The market consists of N ≥ 1 buyer indexed by i = 1, . . . , N and two sellers 
indexed by j = 1, 2. The two sellers offer differentiated products and compete in prices in a 
continuous time model with an infinite horizon. The production costs of these two products are 
both zero. The values of both product are initially unknown to all players in the market, and 
depend on the type of the buyers. We assume that all buyers have the same type, which is either 
high or low, with a common prior that the type is high x0. If the type is high, a representative 
buyer receives expected value ξ1H from consuming good 1 and ξ2H from consuming good 2. If 
the type is low, a representative buyer receives expected value ξ1L from consuming good 1 and 
ξ2L from consuming good 2. We assume that a low type buyer prefers good 1, while a high type 
buyer prefers good 2: ξ1L > ξ2L and ξ2H > ξ1H .

At each instant of time, all market participants are also informed of all the previous outcomes. 
The performance of the products is, however, subject to random disturbances. If a type i = H, L
buyer purchases from a type j seller, the flow utility resulting from this purchase provides a noisy 
signal of the true underlying valuation:

duji(t) = ξjidt + σjdZj (t), (11)

where Z1 and Z2 are independent standard Wiener processes.
Denote by x ∈ [0, 1] the common belief that the type is high. Then each buyer’s expected 

flow payoffs are linear in x: f1(x) = a1x + b1 and f2(x) = a2x + b2 where aj = ξjH − ξjL and 
bj = ξjL satisfying a1 +b1 < a2 +b2 and b1 > b2. If n1 buyers purchase product 1 and n2 = N −
n1 buyers purchase product 2, previous results (see, e.g., Bolton and Harris, 1999, Bergemann 
and Välimäki, 2000) show that x is updated following a diffusion process with zero drift and 
instantaneous variance n1�1(x) + n2�2(x), where �j(x) = x2(1 − x)2(

aj

σj
)2. Afterwards, we 

will let sj � aj

σj
.

Socially efficient allocation. The planner is facing a common value two-armed bandit problem. 
Denote the total social surplus function to be v(x):

v(x) = sup
n1t

{
E

∫ ∞

t=0
e−rt [n1t f1(xt ) + (N − n1t )f2(xt )]dt

}
(12)

s.t. dxt = √
n1t xt (1 − xt )s1dZ̄1(t) + √

N − n1t xt (1 − xt )s2dZ̄2(t),

where Z̄1(t) and Z̄2(t) are independent innovation processes, and follow the standard Wiener 
process. As shown by Bolton and Harris (1999) and Bergemann and Välimäki (2000), the plan-
ner’s optimal solution is a corner solution: ne

1t is either N or 0. W1(x) (W2(x)) denotes the total 
social surplus if in a neighborhood of x, the planner optimally chooses product 1 (2). The value 
functions W1(x) and W2(x) are:

rW1(x) = N(f1(x) + 1

2
�1(x)W ′′

1 (x)), rW2(x) = N(f2(x) + 1

2
�2(x)W ′′

2 (x)). (13)

Since there is no drift term in the updating of x, Theorem 5 in the Online Appendix immediately 
implies that there is one unique socially optimal cutoff, denoted by xe. a1 + b1 < a2 + b2 and 
b1 > b2 imply that arm 2 is chosen if x > xe and arm 1 is chosen if x < xe.
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Therefore, for x < xe,9

W1(x) = Nf1(x)

r
+ C1x

γ1+1
2 (1 − x)−

γ1−1
2 (14)

and for x > xe,

W2(x) = Nf2(x)

r
+ C2x

− γ2−1
2 (1 − x)

γ2+1
2 , (15)

where γj =
√

1 + 8r

Ns2
j

.

At the optimal cutoff xe, the value functions W1 and W2 satisfy value matching, smooth 
pasting and second derivative conditions. Thus, we can explicitly derive an equation about
x = xe:


(x) �
[
s2

1(
γ1 + 1

2
− x) + s2

2(
γ2 − 1

2
+ x)

]
b1 − b2

r

+
[
s2

1
γ1 − 1

2
+ s2

2
γ2 + 1

2

]
(a1 − a2)x

r
= 0, (16)

which implies:

xe = (b1 − b2)(s
2
1

γ1+1
2 + s2

2
γ2−1

2 )

(a2 − a1)
[
s2

1
γ1−1

2 + s2
2

γ2+1
2

]
+ (b1 − b2)(s

2
1 − s2

2)
. (17)

Markov perfect equilibrium. We consider Markov perfect equilibria. At each instant of time t , 
the sellers simultaneously set prices. After observing the price vector, the buyers choose which 
product to buy. The natural state variable is state x for both sellers. The pricing strategy for seller 
j = 1, 2 is pj : [0, 1] → R. Prices can be negative to allow for the possibility that the seller 
subsidizes the buyer to induce her to purchase the product. The acceptance strategy for buyer i
is αi : [0, 1] × R × R → {1, 2}. A symmetric Markov perfect equilibrium is a triple (p1, p2, α)

such that i) given p1, p2 and all other buyers’ strategies α, α maximizes buyer i’s expected 
intertemporal value; ii) given α and p−j , pj maximizes seller j ’s expected intertemporal profit.

Suppose n buyers purchase product 1, then the value of each seller satisfies the following 
equations:

rV1(x) = np1(x) + 1

2
(n�1(x) + (N − n)�2(x))V ′′

1 (x) (18)

rV2(x) = (N − n)p2(x) + 1

2
(n�1(x) + (N − n)�2(x))V ′′

2 (x). (19)

Each Vj can be decomposed into the flow revenue resulting from sales, njpj , and the ex-
pected change in the competitive position generated by the sales of the new product, captured 
by 1

2 (n�1(x) + (N − n)�2(x))V ′′
j (x).

Since all buyers have identical preferences and they have access to the same information, their 
equilibrium value is the same in a symmetric equilibrium. Denote U(x) to be the equilibrium 
value of each buyer, and U(x) satisfies equation

9 For x < xe , the general solution is Nf1(x)
r + C1x

γ1+1
2 (1 − x)

− γ1−1
2 + C′

1x
− γ1−1

2 (1 − x)
γ1+1

2 , but since x = 0 is 
included in the domain, C′ has to be zero to ensure the boundedness of the value function.
1
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rU(x) = max

{
f1(x) − p1(x) + 1

2 [(n + 1)�1(x) + (N − n − 1)�2(x)]U ′′(x)

f2(x) − p2(x) + 1
2 [n�1(x) + (N − n)�2(x)]U ′′(x)

}
, (20)

when n other buyers purchase product 1. Due to price competition, each buyer has to be indiffer-
ent between the alternatives, which implies that:

f1(x) − p1(x) + 1

2
�1(x)U ′′(x) = f2(x) − p2(x) + 1

2
�2(x)U ′′(x). (21)

Equation (21) is not enough to pin down p1 and p2 at the same time. Hence, following 
Bergemann and Välimäki (1996) and Bergemann and Välimäki (2000), we investigate a Markov 
perfect equilibrium with cautious strategies.10 In particular, in a symmetric equilibrium, all buy-
ers will buy from the same seller: either nj = 0 or nj = N . A cautious strategy means that if 
nj = 0, seller j will charge a price pj (x) such that she is just indifferent between selling to one 
buyer at price pj (x) and not selling:

pj (x) + 1

2
�j(x)V ′′

j (x) = 1

2
�−j (x)V ′′

j (x) or pj (x) = 1

2
[�−j (x) − �j(x)]V ′′

j (x). (22)

Once pj is determined, the other firm’s price can be easily derived from equation (21). We focus 
on cutoff strategies. Suppose each buyer purchases product 2 if x > x and purchases product 1 
if x < x. Then the sellers’ optimality conditions imply that at cutoff x, we have the equilibrium 
conditions:

Vj (x−) = Vj (x+), V ′
j (x−) = V ′

j (x+), V ′′
j (x−) = V ′′

j (x+) for seller j = 1,2. (23)

Moreover, for each buyer, the value matching condition has to hold at x:

U(x−) = U(x+). (24)

We can characterize the equilibrium cutoff from the above boundary conditions and obtain the 
following theorem. The proofs of the following and all subsequent results can be found in the 
Appendix A.

Theorem 2. The Markov perfect equilibrium with cautious strategies is socially efficient if and 
only if N = 1 or s1 = s2. Moreover, x > xe (x < xe) when s1 > s2 (s1 < s2).

There are two sources of inefficiency in our model. First, when one seller sells to the buyer, this 
generates information about the product of the other seller. The other seller can thus utilize this 
externality, and free ride on information acquisition. Second, similar to Bergemann and Välimäki
(2000), there is another externality due to the fact that each individual buyer fails to take into 
account the effect of his own purchases on all other buyers. This makes experimentation relatively 
inexpensive for the seller.

The Markov perfect equilibrium with cautious strategies is socially efficient in two special 
cases. When N = 1, the second source of inefficiency does not exist, and cautious strategies are 
crucial to ensure that the equilibrium is efficient. Under cautious strategies, the free-riding seller 

10 This requirement captures the logic behind trembling hand perfection in this infinite time horizon framework (see 
Bergemann and Välimäki, 1996).
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is indifferent, and hence the first source of externality is fully internalized.11 When N ≥ 2, we 
generalize the results in Bergemann and Välimäki (2000) by showing that the Markov perfect 
equilibrium with cautious strategies is efficient if and only if the signal-to-noise ratios of the two 
products are the same (s1 = s2), and if the ratios are different, there will be excessive experimen-
tation towards the product with a higher signal-to-noise ratio. These results are closely related to 
the second derivative condition. In particular, when a product has a higher signal-to-noise ratio, 
then the seller enjoys a higher value of information at the equilibrium cutoff. Meanwhile, the 
second externality implies that experimentation is relatively inexpensive. As a result, the seller 
will take advantage of this inexpensive experimentation by conducting excessive experimenta-
tion. On the other hand, if the signal-to-noise ratios are the same, the value of information is the 
same at the equilibrium cutoff due to the second derivative condition. And hence no seller has an 
incentive to conduct excessive experimentation. In Bergemann and Välimäki (2000), the signal-
to-noise ratios satisfy s1 = 0 < s2. Thus, their inefficiency result can be viewed as a special case 
of Theorem 2.12

4.2. Unemployment, learning, and efficient directed search

In this section, we consider another application in which, similar to Papageorgiou (2014), a 
worker learns his fixed ability in the labor market. Our model is different in the following ways. 
First, in Papageorgiou (2014), a worker can choose to work in one of two occupations or become 
unemployed. In our model, there is only one occupation, and a worker simply chooses whether 
to work or not. Second, to capture common value experimentation, we allow for learning when 
unemployed. This assumption is rationalized by the practice of unemployment training programs. 
Finally, search is directed, whereas Papageorgiou (2014) studies random search model. This 
allows us to study the planner’s optimal allocation problem, which in directed search coincides 
with the equilibrium allocation.

In our context, the planner is essentially solving a common value two-arm bandit problem.13

The problem, however, is different from the previous problems due to the existence of search 
frictions: an employed worker can become unemployed without any cost, but an unemployed 
worker has to search for a vacant firm. We nonetheless show that the second derivative condition 
still holds in our context, and we use this condition to obtain a characterization of the planner’s 
optimal solution.

Population of firms and workers. Time is continuous: t ∈ [0, +∞). The economy is populated 
with a unit measure of workers and a sufficiently large measure of long-lived firms to ensure free 

11 In Bergemann and Välimäki (1996), all Markov perfect equilibria are efficient. The notion of cautious equilibrium 
is introduced to guarantee that the equilibrium is unique. However, in our model, the notion of cautious equilibrium is 
important to guarantee efficiency. In other words, non-cautious Markov perfect equilibria might be inefficient.
12 In related work, Kehoe and Pastorino (2011) and Kehoe and Pastorino (2013) propose a different, discrete time model 
to study experimentation with common value arms and apply it to strategic pricing, where they investigate a duopoly 
model with one consumer. In this framework, they apply constrained efficiency results similar to those in Bergemann 
and Välimäki (1996) in order to fully characterize the equilibrium allocations. In our model, in contrast, we investigate 
a duopoly with many consumers. Now the Markov perfect equilibrium can be inefficient due to the externality caused 
by the fact that each individual buyer fails to take into account the effect of his own purchases on all other buyers. Our 
continuous-time technique enables us to explicitly characterize the equilibrium cutoffs, and discuss when the Markov 
perfect equilibrium is efficient and when it is not.
13 In Papageorgiou (2014), a worker’s optimal decision is characterized by solving two one-armed bandit problems.
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entry. Both firms and workers are ex ante homogeneous. The worker ability ξ ∈ {H, L} is not 
observable, both to firms and workers, i.e., the information is symmetric. Nonetheless, both hold 
a common belief about the worker type, denoted by x ∈ [0, 1]. Upon entry, a newly born worker 
is of type H with probability x0 ∈ (0, 1) and of type L with probability 1 − x0. Workers die with 
exogenous probability ρ. New workers are born at the same rate.

Workers and firms are risk-neutral and discount future payoffs at a rate r > 0. Utility is per-
fectly transferable. Output is produced in pairs of one worker and one firm. The quality of each 
match is purely determined by the ability of the worker. We assume that more able workers 
are more productive, μH ≥ μL. At any moment, the planner can separate a match immediately 
without paying any cost.

Information. Because worker ability is not observable to both the worker and the firm, parties 
face an information extraction problem. They observe a noisy measure of productivity, denoted 
by Xt . Cumulative output is assumed to be a Brownian motion with drift μξ and variance σ 2

Xt = μξ t + σZt (25)

where Zt is a standard Wiener process. The realized performance is public information, so both 
parties commonly update their beliefs about the quality of the match according to Bayes’ rule. 
Specifically, denote xt ≡ Pr(ξ = H |Xt) as the posterior belief about the worker’s quality with 
duration t where Xt = {Xτ }tτ=0 is the realized path. The standard result by Liptser and Shiryaev
(2001) implies that

dxt = xt (1 − xt )s1
[dXt − xtμH dt − (1 − xt )μLdt]

σ
, (26)

where [dXt − xtμH dt − (1 − xt )μLdt]/σ is the innovation process and follows the standard 
Wiener process, and the signal-to-noise ratio s1 = (μH − μL)/σ measures the informativeness 
of the learning.

An unemployed worker enjoys a flow payoff b from leisure. Assume b ∈ (μL, μH ), so that a 
high-quality match is always desirable, but a low-quality match is not. Moreover, an unemployed 
worker can also learn from some other source about his ability (i.e., unemployment training 
programs). For simplicity, we assume that when a worker is unemployed, there is another public 
signal, denoted by Yt , revealing the ability of this worker. The signal is assumed to follow a 
Brownian motion with drift νξ and variance ζ 2

Yt = νξ t + ζ Z̃t (27)

where Z̃t is a standard Wiener process independent of Zt . Under signal Yt , the posterior belief is 
updated according to equation

dxt = xt (1 − xt )s0
[dYt − xtνH dt − (1 − xt )νLdt]

ζ
, (28)

where s0 = (νH − νL)/ζ .

Search and matching technology. Since the expected output is determined by the worker’s 
exogenously given ability, there is no social value from searching on the job. However, when the 
worker receives favorable information about his ability, it may be optimal to let an unemployed 
worker reenter into the market. At any instant, unemployed workers and firms search for new 
matches at different locations.
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At each location, the workers and the vacancies meet (and match) according to a constant-
returns-to-scale matching technology that can be described in terms of the tightness of the 
location θ (i.e., the vacancy-to-worker ratio at the location). Specifically, at any instant, a worker 
meets a vacancy at a rate p(θ) where p : R+ →R+ is a twice continuously differentiable, strictly 
increasing, and concave function such that p(0) = 0, and limθ→0 p′(θ) = ∞. The flow cost of 
maintaining a vacancy is k > 0, which implies that the social cost of maintaining a vacancy also 
constantly returns to scale and can be described in terms of the tightness θ . The per-worker social 
cost of maintaining a tightness θ is given by kθ .

Formulation of the Planner’s problem. As shown in the directed search models of Menzio 
and Shi (2011) and Li and Weng (2015), it is sufficient to consider the planner’s problem in the 
current context. Due to directed search, the planner’s efficient plan can be implemented by a de-
centralized Block recursive market equilibrium if firms and workers can sign bilaterally efficient 
contracts. The posterior belief about the worker’s ability, x ∈ [0, 1], is a sufficient statistic for past 
history and thus is also a natural state variable of any worker. As a result, the space of individual 
state can be defined as a set � = [0, 1] × {0, 1}, where η ∈ {0, 1} denotes the employment status 
of a worker, i.e., η = 0 when a worker is unemployed and η = 1 otherwise. For each worker, 
denote his expected “output” y(x, η) as follows,

y(x, η) = η (xμH + (1 − x)μL) + (1 − η)b. (29)

When a worker is unemployed, we interpret his unemployment benefit b as his “output”.
Define �(�) as the set of all feasible cross-sectional probability measures of the individ-

ual worker states. At any time t , denote Gη
t : [0, 1] → [0, 1] as the cumulative distribution 

function of employed/unemployed workers’ posterior beliefs at time t . Feasibility requires that 
G0

t (1) + G1
t (1) = 1. At time t , the planner observes the aggregate state of the economy Gt . The 

planner then decides whether to separate each match. Denote δ(x) ∈ {0, 1} to be the planner’s 
separation decision for a match whose quality is believed to be high with probability x ∈ [0, 1], 
i.e., δ(x) = 1 represents separation while δ(x) = 0 represents no separation. In addition, the 
planner also chooses θ(x) ∈ R+, the tightness at the location where the x-worker looks for new 
matches.14

For each individual, we allow the planner’s allocation to potentially depend not only on the 
individual’s state but also the calendar time and the aggregate state Gt . Formally, an admissible 
plan for the planner is a measurable function (θ, δ) : R+ × [0, 1] × �(�) → R+ × [0, 1] which 
is right-continuous in time. Namely, given time t and aggregate state Gt , θ(t, x, Gt) denotes the 
tightness of the location where the x-worker is sent to search, and δ(t, x, Gt) is the separation 
decision for a match with posterior x.

Fix an admissible plan and the initial distribution of the states is given by G0, the process of 
{Gt }t≥0 is deterministic. The planner’s payoff is given by

∞∫
0

e−rt

⎡
⎢⎣∑

η

∫
x∈[0,1]

y(x, η)dG
η
t (x)

⎤
⎥⎦dt −

∞∫
0

e−rt

⎡
⎢⎣ ∫
x∈[0,1]

kθ(t, x,Gt )dG0
t (x)

⎤
⎥⎦dt, (30)

14 We omit η in the future expressions, because it is well established that θ is the choice for an unemployed worker and 
δ is the choice of an employed worker.
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where 
∑

η

∫
x∈[0,1] y(x, η)dG

η
t (x) is the total social “output” at time t and k

∫
x∈[0,1] θ(t, x)dG0

t (x)

is the total social cost of vacancy creation at time t .
Let gη(t, x) denote the probability density function corresponding with Gt(·) whenever it 

is well-defined. We can use Kolmogorov forward equation to describe the law of motion of 
gη(t, x), ∀ ∈ [0, 1]. For any x ∈ [0, 1] such that both G0

t and G1
t do not have a mass point at x, 

we have

∂g0(t, x)

∂t
= ∂2

∂x2
[�0(x)g0(t, x)] − [ρ + p(θ(t, x,Gt ))]g0(t, x) where

�0(x) = 1

2
s2

0x2(1 − x)2 (31)

and

∂g1(t, x)

∂t
= ∂2

∂x2
[�1(x)g1(t, x)] − ρg1(t, x) + p(θ(t, x,Gt ))g

0(t, x) where

�1(x) = 1

2
s2

1x2(1 − x)2. (32)

The first term of the right-hand-side of equation (31) captures the density change due to arriving 
information and the second term reflects the change due to death and directed search. Equation 
(32) can be interpreted similarly.

If G0
t has a mass point at x but G1

t does not, then g1(t+, x) may have a kink corresponding 

to the inflow of workers. Denote h(t̃, x̃) = ∂g1(t,x)
∂x

|(t,x)=(t̃ ,x̃), then

�1(x) lim
t̃↘t

(
lim
x̃↗x

h(t̃, x̃) − lim
x̃↘x

h(t̃ , x̃)

)
= p(θ(t, x,Gt ))

(
G0

t (x) − G0
t (x−)

)
. (33)

If G1
t has a mass point at x but G0

t does not and δ(t, x, Gt) = 1, then

G0
t+(x) − G0

t (x) = G1
t (x) − G1

t (x−), (34)

which implies that the measure of unemployed workers with posterior belief x jumps at time t .
The planner’s problem is to choose an admissible plan to maximize (30) subject to (31), 

(32), (33), and (34). Denote the planner’s value function as S(t, Gt). In principle, the planner’s 
problem depends on the aggregate state of the economy Gt ; thus the planner’s problem has 
infinitely many dimensions of “state variables.” Borrowing the technique from Li and Weng
(2015), Theorem 3 below shows that the planner’s problem can be broken down into a set of 
individual problems, and the optimal plan is distribution-free.

Theorem 3 (Separability of the Planner’s problem). The planner’s value function is linear in 
Gt(·) and it depends on the calendar time only through Gt . That is,

S(t,Gt ) =
∫

x∈[0,1]
U(x)dG0

t (x) +
∫

x∈[0,1]
V (x)dG1

t (x), (35)

for any t ≥ 0 where V (x) and U(x) are the component value functions such that

rV (x) = max
δ∈{0,1}

{
(1 − δ)rU(x) + δ

[
xμH + (1 − x)μL + ρ(0 − V (x)) + �1(x)V ′′(x)

]}
,

(36)
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and

(r + ρ)U(x) = max
θ≥0

{b + �0(x)U ′′(x) + p(θ)[V (x) − U(x)] − kθ}. (37)

The planner’s problem in equation (36) is associated with the value of an employed worker or 
match with a different belief; while the value function U(x) in equation (37) is associated with 
the unemployed worker’s value.

Planner’s solution. For an employed worker, the decision of separation is essentially an optimal 
stopping problem. Suppose the planner separates the match when the posterior belief reaches x�. 
For x < x�, it is optimal for a worker to stay unemployed, and hence the value function U(x)

satisfies:

(r + ρ)U(x) = b + �0(x)U ′′(x). (38)

For x > x�, it is optimal for a worker to stay employed, and hence the value function V (x)

satisfies:

(r + ρ)V (x) = xμH + (1 − x)μL + �1(x)V ′′(x). (39)

Since V (x) > U(x) for x > x�, the assumption limθ→0 p′(θ) = ∞ implies that θ�(x) > 0 for 
all x > x�, and hence the value function U(x) satisfies:

(r + ρ)U(x) = b + �0(x)U ′′(x) + max
θ≥0

{p(θ)[V (x) − U(x)] − kθ}. (40)

At x�, the following boundary conditions should be satisfied:

U(x�−) = U(x�+) = V (x�+) (Value Matching), (41)

and

U ′(x�−) = V ′(x�+) (Smooth Pasting). (42)

Notice that equation (41) implies that U ′′(x�−) = U ′′(x�+) � U ′′(x�). But the above bound-
ary conditions are not enough to pin down all of the value functions and the cutoff x�. Further-
more, the argument in Theorem 1 (and the method of sub- and super-solutions as well) does not 
apply in the current context because of the search friction. Inspired by the proof of Theorem 1, 
we find a different way to prove the second derivative condition.

Corollary 1. A necessary condition for the optimal solution x� is that

V ′′(x�) = U ′′(x�). (43)

The second derivative condition (43) together with the other boundary conditions (41) and 
(42) enables us to fully characterize the planner’s solution. We summarize the results into the 
following theorem.

Theorem 4. There is a unique triple (V (x), U(x), x�) such that both V and U are continuous and 
twice differentiable, x� ∈ (0, 1), and they solve (36), (37), (41), (42) and (43) and characterize 
the planner’s component value function in Theorem 3. Moreover, x� is independent of the job 
creation cost k and the matching function p(θ).
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This application is novel not only for the economics but also because it combines common 
value experimentation with switching costs due to (directed) search. To our knowledge, nothing 
similar exists in the literature and due to the switching costs, the method of sub- and super-
solutions cannot be applied in this context. It is precisely because of our method to derive the 
second derivative condition based on one shot deviations that we can completely characterize the 
planner’s solution.

Another striking feature of this application is that an employed worker can become unem-
ployed without any cost, but an unemployed worker has to search for a vacant firm. One may 
thus expect that as the search cost goes up, it becomes more attractive for the planner to let 
the worker stay employed. This logic then implies that x� should decrease as k increases. This 
argument turns out to be incorrect, and Theorem 4 states that the planner’s optimal solution is 
obtained as if there were no search frictions. By doing this, the planner maximizes an employed 
worker’s value V (x), and from equation (40), an unemployed worker’s value is also maximized 
no matter what the job creation cost k or the matching function p(θ) is. Furthermore, as we have 
explicit solutions to value functions (38) and (39), x� can be explicitly characterized. Finally, 
although the cutoff x� is independent of k and p(θ), the laws of motion (31) and (32) will indeed 
depend on k and p(θ). Therefore, a change in k and p(θ) will affect the unemployment rate 
without changing the cutoff, simply because the stationary distribution changes.

5. Concluding remarks

Learning about the common value by means of different choices is common in many economic 
environments: information about a worker’s ability is revealed whether she takes one job or 
another or whether she is unemployed; a patient and his doctor’s belief about his illness evolves 
whether he takes one drug or another; firms learn about consumers’ preferences whether they buy 
one good or another. In this paper, we have proposed a general setup that allows us to analyze 
common value experimentation for a general stochastic framework. We have shown how this 
setup can be applied as a decision problem, in a strategic setting or in a market economy. It can 
also account for switching cost. The value of the paper is to derive the second derivative condition 
from the one-shot-deviation principle (Bellman’s principle of optimality) and to show that this 
method can easily be used to prove results in economically relevant applications.

Appendix A. Omitted proofs

Proof of Theorem 2. If N = 1, the single buyer is also facing a common value two-armed bandit 
problem. As a result, at the cutoff x, we should have:

U(x−) = U(x+), U ′(x−) = U ′(x+), U ′′(x−) = U ′′(x+). (44)

Define total social surplus function W̃(x) = V1(x) + V2(x) + U(x), and it is immediate to see 
that W̃j (x) satisfies the following differential equation:

rW̃j (x) = fj (x) + 1

2
�j(x)W̃ ′′

j (x). (45)

Since W̃ shares the same differential equation as equation (13) and the boundary conditions are 
the same, we conclude that the equilibrium cutoff x must be the same as xe.

We will focus on the N > 1 afterwards. For x > x, the cautious strategies imply
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p1(x) = 1

2
[�2(x) − �1(x)]V ′′

1 (x), (46)

and hence

p2(x) = f2(x) − f1(x) + 1

2
[�2(x) − �1(x)](V ′′

1 (x) + U ′′(x)). (47)

This enables us to rewrite the value functions as:

rV1(x) = N

2
�2(x)V ′′

1 (x)

rV2(x) = N

[
f2(x) − f1(x) + 1

2
[�2(x) − �1(x)](V ′′

1 (x) + U ′′(x)) + 1

2
�2(x)V ′′

2 (x)

]

rU(x) = f1(x) + N

2
�2(x)U ′′(x) − 1

2
[�2(x) − �1(x)](V ′′

1 (x) + U ′′(x)).

Following Lemma 1 in Bergemann and Välimäki (2000), we derive the general solutions to 
the above differential equations:

V1(x) = A1x
− γ2−1

2 (1 − x)
γ2+1

2

V2(x) = N
f2(x) − f1(x)

r
+ A3x

− γ2−1
2 (1 − x)

γ2+1
2 − NA2x

− λ2−1
2 (1 − x)

λ2+1
2

U(x) = f1(x)

r
+ A2x

− λ2−1
2 (1 − x)

λ2+1
2 − A1x

− γ2−1
2 (1 − x)

γ2+1
2 .

Similarly, for x < x, we derive the general solutions as

V1(x) = N
f2(x) − f1(x)

r
+ B3x

γ1+1
2 (1 − x)−

γ1−1
2 − NB2x

λ1+1
2 (1 − x)−

λ1−1
2

V2(x) = B1x
γ1+1

2 (1 − x)−
γ1−1

2

U(x) = f2(x)

r
+ B2x

λ1+1
2 (1 − x)−

λ1−1
2 − B1x

γ1+1
2 (1 − x)−

γ1−1
2 ,

where γj =
√

1 + 8r

Ns2
j

and λj =
√

1 + 8r

(N−1)s2
j +s2−j

.

Then boundary conditions (23) and (24) imply a system of 7 equations with 7 unknowns. At 
the cutoff x = x, simplification yields

f1(x) − f2(x)

r
= 
(x)

G1
+ 
(x)

G2
, (48)

where


(x) =
[
s2

1(
γ1 + 1

2
− x) + s2

2(
γ2 − 1

2
+ x)

]
b1 − b2

r

+
[
s2

1
γ1 − 1

2
+ s2

2
γ2 + 1

2

]
(a1 − a2)x

r
, (49)

G1 = 1

2
(N − 1)s2

1(λ1 − γ1) + 1

2
s2

2(λ1 + γ2), (50)

and

G2 = 1
(N − 1)s2

2(λ2 − γ2) + 1
s2

1(λ2 + γ1). (51)

2 2
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At the socially efficient cutoff xe, 
(xe) = 0 from equation (16), and hence the Markov 
perfect equilibrium is socially efficient if and only if f1(x

e) − f2(x
e) = 0, which is true only 

when s1 = s2. If s1 �= s2, the equilibrium cutoff x is different from xe since f1(x
e) − f2(x

e) �= 0. 
Moreover, when s2 > s1,


(x) =
[
s2

1(
γ1 + 1

2
− x) + s2

2(
γ2 − 1

2
+ x)

]
f1(x) − f2(x)

r

+ (1 − x)(s2
2 − s2

1)(a1 − a2)
x

r
(52)

is decreasing in x, and


(0)

G2
>

b1 − b2

r
= f1(0) − f2(0)

r
. (53)

We should have x < xe when s2 > s1. Similarly, we get x > xe when s2 < s1. �
Proof of Theorem 3. First, borrowing from Li and Weng (2015), we are able to show that the 
planner’s value function at time 0 can be rewritten as:∫

x∈[0,1]
Û0(x)dG0

0(x) +
∫

x∈[0,1]
V̂0(x)dG1

0(x),

where Û0(x) denotes the expected payoff of an unemployed worker with prior x at time 0:

Û0(x) = sup
(θ,δ)∈A

E

⎡
⎣ τ∫

0

e−rt [b − kθt (xt )]dt + e−rτ V̂τ (xτ )|x0 = x

⎤
⎦ , (54)

and V̂0(x) denotes the expected payoff of an employed worker with prior x at time 0:

V̂0(x) = sup
(θ,δ)∈A

E

⎡
⎣ τ∫

0

e−rt y(xt )t + e−rτ Ûτ (xτ )|x0 = x

⎤
⎦ , (55)

and Ûτ (x) and V̂τ (x) are defined in the same fashion at time τ ≥ 0. The proof is similar to the 
proof of Theorem 1 in Li and Weng (2015), and hence is omitted.

Second, we want to show that there admits an optimal solution with V̂0(x) = V̂t (x) and 
Û0(x) = Ût (x). Suppose on the contrary that in all of the optimal solutions, there exists some 
t such that V̂t (x) �= V̂0(x) for a positive measure of x. This allows for two possibilities. When 
V̂t (x) > V̂0(x), since the planner’s objective is to maximize∫

x∈[0,1]
Û0(x)dG0

0(x) +
∫

x∈[0,1]
V̂0(x)dG1

0(x),

then at time 0, the planner can simply change the employed workers’ strategies to be the same 
as the time t employed workers’ strategies. By doing so, the planner obtains a higher value, 
which leads to a contradiction. Similarly, when V̂t (x) > V̂0(x), the planner can increase her 
value by letting the time t employed workers mimic the time 0 employed workers. By doing so, 
the unemployed worker’s expected payoff Û0(x) increases from equation (54). Hence, it follows 



336 J. Eeckhout, X. Weng / Journal of Economic Theory 160 (2015) 317–339
that there admits an optimal solution with V̂0(x) = V̂t (x) for all t ≥ 0. Using the same logic, we 
can also prove that there admits an optimal solution with Û0(x) = Ût (x) for all t ≥ 0.

Since this stochastic optimal control problem has a (stationary) Markovian solution, we can 
further express the value functions V (x) and U(x) as:

rV (x) = max
{
rU(x), xμH + (1 − x)μL − ρV (x) + �1(x)V ′′(x)

}
,

and

(r + ρ)U(x) = max
θ≥0

{b + �0(x)U ′′(x) + p(θ)[V (x) − U(x)] − kθ}. �

Proof of Corollary 1. It is straightforward to show that V ′′(x�) ≥ U ′′(x�) using the fact that it is 
suboptimal to stay employed for x < x�. Assume by contradiction that at the optimal solution x�, 
V ′′(x�) > U ′′(x�). The general solutions to value functions (38) and (39) are given by:

U(x) = b

r + ρ
+ k0x

β0(1 − x)1−β0

V (x) = xμH + (1 − x)μL

r + ρ
+ k1x

1−β1(1 − x)β1

where β0 = 1
2 +

√
1
4 + 2(r+ρ)

s2
0

≥ 1 and β1 = 1
2 +

√
1
4 + 2(r+ρ)

s2
1

≥ 1. For a fixed x�, we can solve 

k0 and k1 using the value matching condition (41) and the smooth pasting condition (42):

b

r + ρ
+ k0(x

�)β0(1 − x�)1−β0 = x�μH + (1 − x�)μL

r + ρ
+ k1(x

�)1−β1(1 − x�)β1 (56)

k0(x
�)β0(1 − x�)1−β0

β0 − x�

x�(1 − x�)
= μH − μL

r + ρ
− k1(x

�)1−β1(1 − x�)β1
β1 + x� − 1

x�(1 − x�)
. (57)

Total differentiation with respect to (56) and (57) implies:

U ′(x�)dx� + (x�)β0(1 − x�)1−β0dk0 = V ′(x�)dx� + (x�)1−β1(1 − x�)β1dk1 (58)

and

U ′′(x�)dx� + (x�)β0(1 − x�)1−β0
β0 − x�

x�(1 − x�)
dk0

= V ′′(x�)dx� − (x�)1−β1(1 − x�)β1
β1 + x� − 1

x�(1 − x�)
dk1. (59)

Since U ′(x�) = V ′(x�) and U ′′(x�) < V ′′(x�), we obtain dk0
dx� > 0 and dk1

dx� > 0. Suppose the 
planner chooses another cutoff x̃� = x� + ε. Value matching and smooth pasting at this new 
cutoff x̃� imply a new pair of parameters (k̃0, k̃1). Then, dk0

dx� > 0 and dk1
dx� > 0 imply that k̃0 > k0

and k̃1 > k1 if ε > 0 is sufficiently small as illustrated by Fig. 1. To show that deviating to x̃�

yields a higher value for the planner, it remains to prove that Ũ(x) ≥ U(x) for all x ≥ x̃�.
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Fig. 1. Solutions for different cutoffs.

Notice that for x ≥ x̃�, equation (40) implies that:

(r + ρ)U(x) = b + �0(x)U ′′(x) + max
θ≥0

{p(θ)[V (x) − U(x)] − kθ} (60)

and

(r + ρ)Ũ(x) = b + �0(x)Ũ ′′(x) + max
θ≥0

{p(θ)[Ṽ (x) − Ũ (x)] − kθ}. (61)

Obviously, when x = x̃�, Ũ (x) > U(x); and when x = 1 (the worker’s ability is believed to be 
H for sure), Ũ (x) = U(x) since Ṽ (x) = V (x). Now assume on the contrary that Ũ(x) < U(x)

for some x > x̃�. Then there must exist x′ > x̃� such that Ũ(x′) = U(x′) and Ũ(x) > U(x)

for x < x′. This implies that Ũ ′(x′) ≤ U ′(x′). From equations (60) and (61), U ′′(x) > Ũ ′′(x)

whenever Ũ(x) ≤ U(x) since maxθ≥0{p(θ)� − kθ} is increasing in �. Therefore, for x > x′, 
we have U ′′(x) > Ũ ′′(x) and hence U ′(x) > Ũ ′(x). But this then implies Ũ(1) < U(1), which 
leads to a contradiction.

Finally, from equation (35), deviating to x̃� yields a higher value S(t, Gt) to the planner. But 
this contradicts with the definition of x�. Therefore, we must have V ′′(x�) = U ′′(x�). �
Proof of Theorem 4. The general solutions to the value functions are given by:

U(x) = b

r + ρ
+ k0x

β0(1 − x)1−β0

V (x) = xμH + (1 − x)μL

r + ρ
+ k1x

1−β1(1 − x)β1

where β0 = 1
2 +

√
1
4 + 2(r+ρ)

s2
0

≥ 1 and β1 = 1
2 +

√
1
4 + 2(r+ρ)

s2
1

≥ 1. At the cutoff x�, value 

matching, smooth pasting and the second derivative conditions are satisfied. Therefore, we can 
explicitly derive x�:
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x� = (b − μL)(s2
0β0 + s2

1(β1 − 1))

(a2 − a1)
[
s2

0(β0 − 1) + s2
1β1

] + (b − μL)(s2
0 − s2

1)
,

and

k0 = s2
0(b − x�μH − (1 − x�)μL)

(s2
1 − s2

0)(r + ρ)
,

k1 = s2
1(b − x�μH − (1 − x�)μL)

(s2
1 − s2

0)(r + ρ)
.

Finally, we want to show that for x ≥ x�, there exists a unique solution to differential equation:

(r + ρ)U(x) = b + �0(x)U ′′(x) + max
θ≥0

{p(θ)[V (x) − U(x)] − kθ} (62)

with boundary conditions

U(x�) = b

r + ρ
+ k0(x

�)β0(1 − x�)1−β0 ,

and

U(1) = b

r + ρ
+ maxθ≥0{p(θ)[ μH

r+ρ
− U(1)] − kθ}

r + ρ
.

The existence and uniqueness proof is similar to the proof of Theorem 2 in Bonatti (2011). 
First, equation (62) can be rewritten as:

U ′′(x) = min
θ≥0

(r + ρ)U(x) − b − {p(θ)[V (x) − U(x)] − kθ}
�0(x)

. (63)

It is straightforward to verify that U1(x) = b
r+ρ

is a strict subsolution of (63), and U2(x) =
V (1) = μH

r+ρ
is a strict supersolution of (63). Moreover, for a given interval Jε = [x�, 1 − ε], the 

boundary value problem (62) is regular with respect of U1(x) and U2(x) on Jε since

min
θ≥0

(r + ρ)U(x) − b − {p(θ)[V (x) − U(x)] − kθ}
�0(x)

< max
x∈Jε

(r + ρ)V (x) − b

�0(x)
.

Therefore, from Lemma 2 in Bonatti (2011), for all ε > 0, the boundary value problem (62)
admits a C2 solution on Jε . Let ε → 0, and the limit function solves (62) as shown by Bonatti
(2011).

The solution to the boundary value problem (62) is unique. Suppose instead there were two 
solutions U1 and U2 with U1(x) > U2(x) for all x ∈ A. Then from equation (63), we must 
have U ′′

1 (x) > U ′′
2 (x) for x ∈ A. On the other hand, since these two solutions share the same 

boundary conditions, U1(x) − U2(x) must attain its local maximum on A. But this implies that 
U ′′

1 (x) < U ′′
2 (x) for some x ∈A. This contradicts the assumption U1(x) > U2(x). �

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2015.10.002.

http://dx.doi.org/10.1016/j.jet.2015.10.002
http://dx.doi.org/10.1016/j.jet.2015.10.002
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